Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Palladium⁰-catalyzed isomerization of (Z)-1-functionalized-4-acetoxy-2-butenes: Solvent and substituent effects

Anna Maria Zawisza^{a,b}, Jacques Muzart^{b,*}

^a Department of Organic and Applied Chemistry, University of Lodz, ul. Narutowicza 68, 90-136 Lodz, Poland ^b Institut de Chimie Moléculaire, CNRS-Université de Reims Champagne-Ardenne, UFR Sciences, Boîte no. 44, BP 1039, 51687 Reims Cedex 2, France

ARTICLE INFO

Article history: Received 18 August 2009 Received in revised form 21 September 2009 Accepted 22 September 2009 Available online 29 September 2009

Keywords: Catalysis Allylpalladium Coordination modes 1,4-Difunctionalized-2-butenes Isomerization Solvent effects

ABSTRACT

The Pd(PPh₃)₄-catalyzed isomerization of (*Z*)-1,4-diacetoxy-2-butene, (*Z*)-1-(*t*-butyldimethylsilyloxy)-4acetoxy-2-butene and (*Z*)-1-(*t*-butyldiphenylsilyloxy)-4-acetoxy-2-butene affords the corresponding (*E*)isomers and 1,2-difunctionalized-3-butenes. In THF, the formation of the (*E*)-isomers is mainly due to reaction from an η^1 -allylpalladium intermediate while an η^3 -allylpalladium is the main key intermediate in DMF. The time to reach equilibrium between the products and their respective concentrations depend on the nature of the substituents and the solvent.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The 1,3-transposition of allylic acetates in the presence of catalytic amounts of palladium complexes is a well known reaction [1], which has been extensively used in synthetic organic chemistry. We have previously reported the isomerisation of (*Z*)-1,4diacetoxy-2-butene ($\mathbf{1}_{Ac}$) using catalytic amounts of Pd(PPh₃)₄ or PdCl₂(MeCN)₂ in THF and DMF [2,3]. With the Pd⁰ catalyst, we have demonstrated that $\mathbf{1}_{Ac}$ was selectively isomerized to (*E*)-1,4-diacetoxy-2-butene ($\mathbf{2}_{Ac}$) in THF while both $\mathbf{2}_{Ac}$ and 1,2-diacetoxy-3-butene ($\mathbf{3}_{Ac}$) were simultaneously obtained in DMF (Scheme 1) [2].¹ A set of experiments, examined in the light of Amatore and Jutand et al. results [4], has led to conclude to the involvement of an η^1 -allylpalladium complex in the former solvent, and of an η^3 -allylpalladium complex in the latter as the key intermediates from $\mathbf{1}_{Ac}$. We have envisaged that the unexpected behavior of $\mathbf{1}_{Ac}$ in THF could be due to the intramolecular stabiliza-

* Corresponding author. Fax: +33 3 26913166.

E-mail address: jacques.muzart@univ-reims.fr (J. Muzart).

tion of the η^1 -allylpalladium intermediate by ligation of the acetate unit, giving rise to the complex C'_{Ac} possessing a 16-electron configuration as depicted in Scheme 2. This hypothesis urges us to investigate the Pd⁰-catalyzed isomerization of (*Z*)-1-(*t*-butyldimethylsilyloxy)-4-acetoxy-2-butene (1_{*sm*}) and (*Z*)-1-(*t*-butyldiphenylsilyloxy)-4-acetoxy-2-butene (1_{*sp*}) under the same conditions. Given the obtained results, we have also monitored the corresponding reactivity of (*E*)-1-(*t*-butyldimethylsilyloxy)-4-acetoxy-2-butene (2_{*sm*}) and 1-(*t*-butyldimethylsilyloxy)-2-acetoxy-3-butene (3_{*sm*}). Here is reported this study.

2. Results

The reaction of $\mathbf{1}_{sm}$ induced by 0.05 equiv. of Pd(PPh₃)₄ in refluxing THF afforded (*E*)-1-(*t*-butyldimethylsilyloxy)-4-acetoxy-2-butene ($\mathbf{2}_{sm}$) and 1-(*t*-butyldimethylsilyloxy)-2-acetoxy-3-butene ($\mathbf{3}_{sm}$) (Eq. (1)). Monitoring the isomerization by GC (Fig. 1 and Table S1)² showed that the quantity of $\mathbf{2}_{sm}$ reached a maximum after 15–20 min and then decreased, leading to an equilibrium between the three isomers after 50–60 min with an $\mathbf{1}_{sm}/\mathbf{2}_{sm}/\mathbf{3}_{sm}$ ratio, noted $\mathbf{E}_{sm,THF}$, estimated to ca. 4:60:36.

¹ For our previous reported studies, the Pd⁰-catalyzed isomerization of $\mathbf{1}_{Ac}$ was monitored using ¹H NMR [2]. In repeating the monitoring of this reaction using HPLC, we have observed that this isomerization led to an equilibrium between $\mathbf{1}_{Ac}$, $\mathbf{2}_{Ac}$ and $\mathbf{3}_{Ac}$, the quantity of $\mathbf{1}_{Ac}$ being 2–3%.

 $^{^2\,}$ Given the accuracy of the GC and HPLC analysis, the values of the proportions of the isomers indicated in Tables S1–S6 are at ±1.

Scheme 1.

Switching from THF to DMF as solvent led at 70 °C to a fast reaction: the proportions of 1_{Sm} , 2_{Sm} and 3_{Sm} did not evolve after 1 min (Fig. 2 and *Table* S2), the $1_{Sm}/2_{Sm}/3_{Sm}$ noted $E_{Sm,DMF}$ being ca. 4:70:26.

In THF, the amount of the (*E*)-isomer from $\mathbf{1}_{Sp}$ reached a maximum after 25–35 min and the $\mathbf{1}_{Sp}/\mathbf{2}_{Sp}/\mathbf{3}_{Sp}$ equilibrium ($\mathbf{E}_{Sp,THF} \approx 2:66:32$) was attained after ca. 80 min (Fig. 3 and *Table* S3). In DMF, the equilibrium ($\mathbf{E}_{Sp,DMF} \approx 6:69:25$) was attained after ca. 7 min (Fig. 4 and *Table* S4).

The isomerization of 2_{Sm} and 3_{Sm} has been examined only in THF (*Tables* S5 and S6). The $2_{Sm} \rightarrow 1_{Sm} + 3_{Sm}$ and $3_{Sm} \rightarrow 1_{Sm} + 2_{Sm}$ were observed with equilibria between the three compounds attained after 90–220 min.

To resume the previous $[2]^1$ and present results, the reaction times to attain the equilibrium, noted $TE_{Y,solvent}$, and the corresponding relative amounts of the three isomers (noted $E_{Y,solvent}$) from 1_{Ac} , 1_{Sp} , 1_{Sm} , 2_{Sm} and 3_{Sm} , are listed in Table 1.

3. Discussion

From the results assembled in Figs. 1 and 3 and those previously obtained from $\mathbf{1}_{Ac}$ [2], it appears that the concentration, in THF, of the (*E*)-isomer versus time from $\mathbf{1}_{Ac}$, $\mathbf{1}_{Sm}$ and $\mathbf{1}_{Sp}$ went trough a maximum before to decrease. Consequently, we assume that the

Scheme 2.

Fig. 1. Evolution over time of the proportions of 1_{Sm} (\blacksquare), 2_{Sm} (\blacklozenge) and 3_{Sm} (\blacklozenge) from the Pd(PPh_3)_4-catalyzed reaction of 1_{Sm} in refluxing THF.

Fig. 2. Evolution over time of the proportions of $\mathbf{1}_{Sm}(\mathbf{I})$, $\mathbf{2}_{Sm}(\mathbf{A})$ and $\mathbf{3}_{Sm}(\mathbf{A})$ from the Pd(PPh₃)₄-catalyzed reaction of $\mathbf{1}_{Sm}$ in DMF at 70 °C.

Fig. 3. Evolution over time of the proportions of $\mathbf{1}_{Sp}$ (\blacksquare), $\mathbf{2}_{Sp}$ (\blacktriangle) and $\mathbf{3}_{Sp}$ (\blacklozenge) from the Pd(PPh₃)₄-catalyzed reaction of $\mathbf{1}_{Sp}$ in refluxing THF.

Fig. 4. Evolution over time of the proportions of 1_{Sp} (\blacksquare), 2_{Sp} (\blacklozenge) and 3_{Sp} (\blacklozenge) from the Pd(PPh_3)_4-catalyzed reaction of 1_{Sp} in DMF at 70 °C.

Table 1

Influence of the nature of Y and the solvent on the equilibria.

		Substrate	Substrate				
	Solvent	1 _{Ac}	1 _{<i>Sp</i>}	1 _{<i>Sm</i>}	2 _{<i>Sm</i>}	3 _{Sm}	
Reaction time for the equilibrium = $TE_{Y,solvent}$	THF DMF	≈45 min ≈30 min	≈80 min ≈7 min	≈55 min ≈1 min	$\approx 100 \text{ min}$	$\approx 200 \text{ min}$	
$1_{y}:2_{Y}:3_{Y}$ at equilibrium = $\mathbf{E}_{Y,solvent}$	THF DMF	≈2:60:38 ≈2:62:36	$\approx 2:66:32$ $\approx 6:69:25$	\approx 4:60:36 \approx 4:70:26	≈4:59:37	≈4:59:37	

formation of 2_{Ac} from an η^1 -allylpalladium rather than from an η^3 allylpalladium is not due to the possible stabilization of the former complex by coordination of the OAc unit leading to C'_{Ac} (Scheme 2). As from 1_{Ac} , the shape, in DMF, of the curves corresponding to the concentration of (*E*)-isomers 2_{Sm} and 2_{Sp} did not indicate the presence of a maximum before the equilibrium (Figs. 2 and 4). Given these observations, a mechanistic scheme common to 1_{Ac} , 1_{Sm} and 1_{Sp} can be proposed in taking into account the following Amatore and Jutand remark: "ions pairs [(η^3 -CH₂CHCH₂)Pd-(PPh₃)₂+AcO⁻] are formed in THF whereas free ions are formed in DMF" [4,5].

In THF, the main reactive pathway at the beginning of the transformation of 1_Y is the formation of 2_Y via tight ion pairs A_Y , B_Y and C_Y as intermediates (Scheme 3, path *a*). According to previous results [2] and those from 1_{Sm} , 1_Y evolves more rapidly than 2_Y . Consequently, a relative high conversion of 1_Y is attained before one observes 1,3-transposition of 2_Y into 3_Y (path *b*). Concurrent reactive pathways leading to 3_Y could involve the $C_Y \rightarrow D_Y$ transformation (path *c*) and reaction from A_Y with possibly B'_Y as intermediate (paths *d* and *e*).

We have previously shown that, in DMF, 2_{Ac} and 3_{Ac} are concomitantly produced from 1_{Ac} , the $2_{Ac}/3_{Ac}$ ratio being ca. 1.7 throughout the entire reaction [2]. While equilibrium from 1_{Sm} is obtained too rapidly (Fig. 2) to make valuable comments on the formation of 2_{Sm} and 3_{Sm} , the reaction from 1_{Sp} is, according to Fig. 4, rather similar to that from 1_{Ac} . Nevertheless, the $2_{Sp}/3_{Sp}$ ratio decreased with time from ca. 13 after 1 min of reaction, to 2.8 at the equilibrium (Table S4).³ The separation of the ions in DMF [4,5] led the $C_Y \rightarrow D_Y$ transformation (path *c*) to effectively compete with the $C_Y \rightarrow 2_Y$ step (path *a*). Consequently, 2_Y and 3_Y can be both produced from D_Y . The non-linearity with time of the $2_{Sp}/3_{Sp}$ ratio led us, however, to suspect that some 2_{Sp} is produced via path *a* even in DMF. Since the $2_{Sp}/3_{Sp}$ ratio is always widely >1, the formation of 3_{Sp} from A_Y via path *d* or *e* is, at the best, a very limited reactive process. As shown in Table 1, the $\mathbf{TE}_{Y,solvent}$ depends on Y, in particular when DMF is the solvent. Indeed, the reaction time in DMF for the equilibrium varies from a few min when Y = SiMe₂t-Bu or SiPh₂t-Bu to 30 min when Y = OAc. The differences are much lower in THF, in which the main reactive pathway is $\mathbf{1}_Y \rightarrow \mathbf{A}_Y \rightarrow \mathbf{B}_Y \rightarrow \mathbf{C}_Y \rightarrow \mathbf{2}_Y$. A possible explanation of the greatest $\mathbf{TE}_{Ac,DMF}$ could be the already suspected stabilization of \mathbf{C}_{Ac} by the acetate unit leading to \mathbf{C}'_{Ac} (Scheme 2). The absence of such stabilization when $\mathbf{1}_{Sm}$ and $\mathbf{1}_{Sp}$ are the substrates, would facilitate the transformation of the η^1 -allylpalladium into the η^3 -allylpalladium, i.e. the $\mathbf{C}_{Sm} \rightarrow \mathbf{D}_{Sm}$ and $\mathbf{C}_{Sp} \rightarrow \mathbf{D}_{Sp}$ pathways, hence a faster equilibrium.

The dependence of the $2_Y/3_y$ ratios with the nature of Y is particularly observed in DMF (Table 1). This can be explained in considering the $\mathbf{D}_Y \rightarrow \mathbf{2}_Y + \mathbf{3}_Y$ transformation. Due to its polarity [6], DMF solvates efficiency the acetate anion [7] yielding bulky nucleophilic species. Consequently, steric repulsions between these species and Y increase with the size of this latter leading to a decrease of the $\mathbf{D}_Y \rightarrow \mathbf{3}_Y$ reaction at the benefit of the $\mathbf{D}_Y \rightarrow \mathbf{2}_Y$ reaction, hence $\mathbf{2}_{Ac}(\mathbf{3}_{Ac}$ ratio lower than the $\mathbf{2}_{Sp}/3_{Sp}$ and $\mathbf{2}_{Sm}/3_{Sm}$ ratios. The acetate anion being less prone to solvation in THF, the OAc/Y interactions are lower and, consequently, the difference in the two reactive pathways occurring from \mathbf{D}_Y is also decreased.

The nature of the solvent may also affect the equilibrium ($\mathbf{E}_{Y,solvent}$) between the three isomers (Table 1). This is highlighted from $\mathbf{1}_{Sp}$ and $\mathbf{1}_{Sm}$, and could be due to the coordinating properties of DMF towards the transition metals [4,5,8,9]. It is known that DMF can substitute coordinated PPh₃ [10], and that the equilibria attained from the Pd⁰-catalyzed 1,3-transposition of allylic acetates is ligand dependent [11]. Thus, coordination of DMF to the palladium intermediates depicted in Scheme 3 can have an effect on equilibria and reaction rates.

In conclusion, the mechanism of the Pd⁰-catalyzed isomerization of allylic acetates depends on the dissociating, solvating and coordinating properties of the solvent.

Acknowledgement

We are grateful to CNRS for a temporary position to A.M.Z.

³ The isomerization of $\mathbf{1}_{Sp}$ and corresponding GC monitoring have been carried out twice: similar results have been obtained from one experiment to the other.

Appendix A. Supplementary material

Supplementary data associated with this article (Tables S1–S6. Synthesis of 1_{Sm} , 1_{Sp} . Isomerization and analysis procedures.) can be found, in the online version, at doi:10.1016/j.jorganchem. 2009.09.028.

References

- [1] B.M. Trost, Tetrahedron 33 (1977) 2615–2649;
- B.M. Trost, D.L. Van Vranken, Chem. Rev. 96 (1996) 395-422;
- J. Tsuji, Palladium Reagents and Catalysts, Wiley, Chichester, 1995. pp. 290– 395.
- [2] S. Bouquillon, J. Muzart, Eur. J. Org. Chem. (2001) 3301-3305.
- [3] A.M. Zawisza, S. Bouquillon, J. Muzart, Eur. J. Org. Chem. (2007) 3901-3904.
- [4] C. Amatore, A. Jutand, G. Meyer, L. Mottier, Chem. Eur. J. 5 (1999) 466-473.
- [5] A. Jutand, Eur. J. Inorg. Chem. (2003) 2017–2040.

- [6] For scales of solvent polarity, see: C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 2nd ed., VCH, Weinheim, 1988. pp. 339–413;
 J. March, Advanced Organic Chemistry, 4th ed., John Wiley & Sons, New York, 1992. pp. 360–362.
- [7] A.J. Parker, Chem. Rev. 69 (1969) 1-32.
- [8] V. Gutmann, Coordination Chemistry in Non-Aqueous Solutions, Springer, Wien, 1968. pp. 152–154;
 - T. Hosokawa, T. Nomura, S.-I. Murahashi, J. Organomet. Chem. 551 (1998) 387-389;

M. Aresta, C. Pastore, P. Giannoccaro, G. Kovács, A. Dibenedetto, I. Pápai, Chem. Eur. J. 13 (2007) 9028–9034;

- A. Jutand, Chem. Rev. 108 (2008) 2300-2347;
- R. Álvarez, M. Pérez, O.N. Faza, A.R. de Lera, Organometallics 27 (2008) 3378– 3389.
- [9] For a review on DMF roles, see: J. Muzart, Tetrahedron 65 (2009) 8313-8323.
- [10] C. Amatore, A. Jutand, G. Meyer, I. Carelli, I. Chiarotto, Eur. J. Inorg. Chem. (2000) 1855-1859.
- [11] D.C. Braddock, A.J. Wildsmith, Tetrahedron Lett. 42 (2001) 3239-3242.